Optimization-Induced Graph Implicit Nonlinear

Diffusion

Introduction

Motivation

Due to the over-smoothing issue, most existing graph neural networks
can only capture limited dependencies with their inherently finite
aggregation layers.

An implicit layer is equivalent to infinite propagation steps, but existing
implicit GNNs share a linear isotropic aggregation mechanism that
treats all neighbors equally, which is the cause of the over-smoothing.

Inspiration from Image Processing

Evolution of an MRI slice under different

PDEs (Figure 5.3 & 5.4 in [1])
Left column: Linear diffusion.
Right column: Edge-enhancing

« Researchers often use the diffusion equation
to describe image restoration. If the input
image is considered as the initial value, the
image will become increasingly blurred along
the dimension of time (from top to bottom).
We want to preserve desired image
structures, such as edges, while blurring
others, which is not possible with linear
isotropic Gaussian blurring (left column).

* Perona-Malik [2] diffusion depends the
diffusion coefficient on the norm of the
image gradient. They manually design a
nonlinear function that approximates an
impulse function close to edges to reweight
the differences between image pixels, so that
patterns with larger gradient norms are more
easily distinguished from others during the
diffusion process (right column).

anisotropic diffusion.

Contribution

We develop a new kind of implicit GNNs, GIND, whose nonlinear
diffusion overcomes the limitations of existing linear isotropic diffusion by
adaptively aggregating nonlinear features from neighbors.

We develop the first optimization framework for an implicit GNN by
showing that the equilibrium states of GIND correspond to the solution of
a convex objective. Based on this perspective, we derive principled
structural variants with empirical benefits.

Extensive experiments on node-level and graph-level classification tasks
show our GIND obtains state-of-the-art performance among implicit
GNNs, and also compares favorably to explicit GNNs.
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Method: Graph Implicit Nonlinear Diffusion
GIND: Nonlinear Diffusion on Graphs
Z=-GTo(G(Z + ba(X))K")K,

Y = g@(X + Z)7

X: node feature matrix, Z: node equilibrium,
K: linear transformation, a(-): element-wise Tanh,
G: discrete gradient, —G” : discrete divergence,
bg: an affine transformation, gg: the readout head.

«  We design the equilibrium state Z to be the residual refinement of
the input features X through the diffusion process, a.k.a. the
transported mass of X [1]. As a result, starting from an initial value,
the estimated transported mass Z could be gradually refined through
the fixed point iteration of our nonlinear diffusion process. Finally, it
will reach a stable equilibrium that cannot be further improved.

» The norm of the flux j = —a(G(-)KT) describes the magnitude of the
information flow between two nodes. The larger the norm, the higher
the degree of mixing between node pairs. We use Tanh to keep
small-value gradients while shrinking large-value gradients. In graph
diffusion, this amounts to a desirable anisotropic-like behavior,
which helps prevent over-smoothing and improves robustness to
noisy perturbations.

An Optimization Framework for GIND

Theorem 4.1. Assume that the nonlinear function o(-) is
monotone and L,-Lipschitz, i.e.,
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and 1> L, ”K@GH2 =L, ||K||§HG”2. Then there

exists a convex function p(z), such that its minimizer is the

solution to the equilibrium equation z = f(z). Further-
1

more, we have Proxy(2) = -7 (Loz + f(2)).

The theorem shows that the learned representation can be formalized as the
minimizer of an explicit convex optimization objective. With this property, we
can induce new structural variants by modifying the corresponding objective.
To be specific, we can embed prior properties to the equilibrium, as well as
introducing skip connections to promote training stability.

+ Optimization-Inspired Skip-Connection:  z = T(z) = (1 — @)z + af(2),

« Optimization-Inspired Feature Regularization:  z=T(z) o Tr,

« Laplacian Regularization: Ry.,(z)=2z"D *LD #z= "Gz

« Feature Decorrelation: Rp.(z) = % |22™ -1;., where 2 is the normalized z.

Results

GIND performs well on heterophilic graphs with nonlinear diffusion.
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Type Method Cornell Texas Wisconsin ~ Chameleon Squirrel
GCN 59.194£3.51 64.05+528 61.17+4.71 42344277 29.0+1.10
GAT 59.46+£6.94 61.62+5.77 60.78+£8.27 46.03+£2.51 30.51%1.28
JKNet 58.18+3.87 63.78+6.30 60.984+2.97 44.45+3.17 30.83+1.65
Explicit APPNP 63.78+5.43 64.32+7.03 61.574+3.31 43.85+2.43 30.67+1.06
Geom-GCN 60.81 67.57 64.12 60.9 38.14
GCNII 76.75+£5.95 73.51+9.95 78.82+5.74 48.59+1.88 32.20+1.06
H2GCN 82.22+5.67 84.76+5.57 85.88+4.58 60.30+2.31 40.75+1.44
IGNN 61.35+4.84 5837+5.82 53.53+6.49 41.38+2.53 24.99+2.11
Implicit EIGNN 85.13+5.57 84.60+5.41 86.86+5.54 62.92+1.59 46.37+1.39
GIND (ours) 85.68+3.83 86.22+5.19 88.04+3.97 66.82+2.37 56.71+2.07

Results on heterophilic node classification datasets: mean accuracy (%)  standard deviation over different data splits.

GIND obtains significant improvements on graph-level tasks.

Type Method MUTAG PTC COX2  PROTEINS NCI1
WL 84.1+1.9 58.0+2.5 83.2+02 74.7+0.5  84.5+0.5
DCNN 67.0 56.6 - 61.3 62.6

Explicit DGCNN 85.8 58.6 - 75.5 74.4
GIN 89.44+5.6 64.6+£7.0 - 76.2+2.8  82.7+1.7
FDGNN 88.5+3.8 634454 833429 76.8+29 77.8%1.6
IGNN* 76.0+13.4 60.5+64 79.7+34  76.5+34  73.5+19

Implicit CGS 89.445.6 64.7+6.4 - 76.3+4.9  77.6+2.0
GIND (ours) 89.3+7.4  66.9+6.6 84.8+4.2 77.2+29 78.8+1.7

Results of graph classification: mean accuracy (%) + standard deviation over 10 random data splits.

The optimization-induced variants can boost the performance.

Reg Cora CiteSeer PubMed

None 88.25+1.25 76.81+£1.68 89.22+0.40
Rrap 8833+1.15 76.95+£1.73 89.42+0.50
Rpec 88.29+0.92 76.84+1.70 89.28+0.41

Comparison of different regularization types.
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